Differentially Private Release of Synthetic Graphs

Marek Eliáš

EPFL

Joint work with Michael Kapralov, Janardhan Kulkarni, Yin Tat Lee

Private network analysis

Private network analysis

Social networks:

- contain valuable information about our societies
- stability of the society, information spread

Private network analysis

Social networks:

- contain valuable information about our societies
- > stability of the society, information spread

Network analysis in a private manner?

Input:

ightharpoonup graph G(V, E) with edge-weights w

- lacktriangle differentially private graph $\tilde{\mathsf{G}}$ with weights \tilde{w}
- ▶ for any $I, J \subset V$: $\tilde{w}(I, J) \approx w(I, J)$
 - ▶ i.e., preserving weight of (I, J)-cuts

Input:

ightharpoonup graph G(V, E) with edge-weights w

- lacktriangle differentially private graph $ilde{\mathsf{G}}$ with weights $ilde{w}$
- ▶ for any $I, J \subset V$: $\tilde{w}(I, J) \approx w(I, J)$
 - ▶ i.e., preserving weight of (I, J)-cuts

Input:

ightharpoonup graph G(V, E) with edge-weights w

- lacktriangle differentially private graph $ilde{\mathsf{G}}$ with weights $ilde{w}$
- ▶ for any $I, J \subset V$: $\tilde{w}(I, J) \approx w(I, J)$
 - ▶ i.e., preserving weight of (I, J)-cuts

Input:

ightharpoonup graph G(V, E) with edge-weights w

Output:

- lacktriangle differentially private graph $\tilde{\mathsf{G}}$ with weights \tilde{w}
- ▶ for any $I, J \subset V$: $\tilde{w}(I, J) \approx w(I, J)$
 - ▶ i.e., preserving weight of (I, J)-cuts

We can analyze \tilde{G} using traditional tools

we need to keep in mind the error guarantee

Differential privacy: definition

ϵ -Differential privacy:

- randomized mechanism $M: \mathcal{G} \to \mathcal{G}$
- ▶ for any pair of neighboring graphs $G, G' \in \mathcal{G}$
 - ▶ G and G' differ in a single edge: $||w w'||_1 \le 1$
 - ► (edge-level privacy)
- ▶ for any $S \subseteq \mathcal{G}$

$$\mathbb{P}\big(M(G) \in S\big) \leqslant \exp(\varepsilon) \cdot \mathbb{P}\big(M(G') \in S\big)$$

Differential privacy: definition

ϵ -Differential privacy:

- ightharpoonup randomized mechanism $M: \mathcal{G} \to \mathcal{G}$
- ▶ for any pair of neighboring graphs $G, G' \in \mathcal{G}$
 - ▶ G and G' differ in a single edge: $||w w'||_1 \le 1$
 - ► (edge-level privacy)
- ▶ for any $S \subseteq \mathcal{G}$

$$\mathbb{P}\big(M(G) \in S\big) \leqslant \text{exp}(\varepsilon) \cdot \mathbb{P}\big(M(G') \in S\big)$$

 (ϵ, δ) -Differential privacy:

$$\mathbb{P}\big(M(G) \in S\big) \leqslant exp(\varepsilon) \cdot \mathbb{P}\big(M(G') \in S\big) + \delta$$

Randomized response

- ► Gupta, Roth, Ullman'12
- $w_e' = w_e + \zeta_e$, where $\zeta_e \sim \text{Lap}(1/\epsilon)$ i.i.d.
- ightharpoonup additive error: $O(n^{3/2})$
- useful only for graphs with $\gg n^{3/2}$ edges

Randomized response

- ► Gupta, Roth, Ullman'12
- $\mathbf{w}_e' = \mathbf{w}_e + \zeta_e$, where $\zeta_e \sim \text{Lap}(1/\epsilon)$ i.i.d.
- ightharpoonup additive error: $O(n^{3/2})$
- useful only for graphs with $\gg n^{3/2}$ edges

Other results

▶ Blocki, Blum, Datta, Sheffet '12; Upadhyay '13

Exponential mechanism: Naïve version

- ightharpoonup score $\Theta(\exp(n^2))$ possible output graphs by their error
- return a sample from this distribution
- \triangleright error proportional to n^2

¹Only for cuts of type $(S, V \setminus S)$

Exponential mechanism: Naïve version

- ightharpoonup score $\Theta(\exp(n^2))$ possible output graphs by their error
- return a sample from this distribution
- \triangleright error proportional to n^2

Exponential mechanism: Improved version

- fundamental result: existence of sparsifiers
 - preserve cut sizes¹ with a small multiplicative error
 - number of edges: O(n)

¹Only for cuts of type $(S, V \setminus S)$

Exponential mechanism: Naïve version

- ightharpoonup score $\Theta(\exp(n^2))$ possible output graphs by their error
- return a sample from this distribution
- \triangleright error proportional to n^2

Exponential mechanism: Improved version

- ► fundamental result: existence of sparsifiers
 - preserve cut sizes¹ with a small multiplicative error
 - ightharpoonup number of edges: O(n)
 - ightharpoonup only $\exp(O(n \log n))$ possible sparsifiers!
- additive error: n log n, multiplicative error due to sparsification
- Drawback: exponential time!

¹Only for cuts of type $(S, V \setminus S)$

polynomial-time mechanism

Input:

lacktriangle graph G^* s.t. $\sum_e w_e^* = \mathfrak{m}$

- \blacktriangleright (ϵ, δ) -DP synthetic graph G with weights w
- \blacktriangleright with probability $(1-\gamma)$:
 - ▶ for all $I, J \subset V$: $|w(I, J) w^*(I, J)| \leq \tilde{O}(\sqrt{mn})$
- ▶ i.e. purely additive error

polynomial-time mechanism

Input:

lacktriangle graph G^* s.t. $\sum_e w_e^* = \mathfrak{m}$

- \triangleright (ϵ, δ) -DP synthetic graph G with weights w
- \blacktriangleright with probability $(1-\gamma)$:
 - ▶ for all I, J ⊂ V: $|w(I, J) w^*(I, J)| \leq O\left(\sqrt{mn/\epsilon} \cdot \log^2(n/\delta)\right)$
- i.e. purely additive error

polynomial-time mechanism

Input:

lacksquare graph G^* s.t. $\sum_e w_e^* = \mathfrak{m}$

- \triangleright (ϵ, δ) -DP synthetic graph G with weights w
- \blacktriangleright with probability $(1-\gamma)$:
 - ▶ for all I, J ⊂ V: $|w(I, J) w^*(I, J)| \leq O\left(\sqrt{mn/\epsilon} \cdot \log^2(n/\delta)\right)$
- ▶ i.e. purely additive error
- first polytime alg. with non-trivial guarantee for sparse graphs

polynomial-time mechanism

Input:

lacktriangle graph G^* s.t. $\sum_e w_e^* = \mathfrak{m}$

Output:

- \triangleright (ϵ, δ) -DP synthetic graph G with weights w
- \blacktriangleright with probability $(1-\gamma)$:
 - ▶ for all I, J ⊂ V: $|w(I, J) w^*(I, J)| \leq O(\sqrt{mn/\epsilon} \cdot \log^2(n/\delta))$
- ► i.e. purely additive error
- ▶ first polytime alg. with non-trivial guarantee for sparse graphs

Lower bounds for purely additive error

$$\Omega(\sqrt{mn/\epsilon})$$

Should we use sparsification?

Algorithm by Spielman and Srivastava

- sample edges by their effective resistance
- ▶ number of edges: $O(\alpha^{-2} n \log n)$
- ightharpoonup multiplicative error: $(1 + \alpha)$

Should we use sparsification?

Algorithm by Spielman and Srivastava

- ► sample edges by their effective resistance
- ▶ number of edges: $O(\alpha^{-2} n \log n)$
- ightharpoonup multiplicative error: $(1 + \alpha)$

Problem:

- only existing edges are sampled
- ightharpoonup edge eals in the output \Rightarrow ho was present in the input!
- not private

Our approach

Find cut approximator using convex optimization

- mirror descent
- ► iterative technique
- we can choose target precision

Our approach

Find cut approximator using convex optimization

- mirror descent
- ► iterative technique
- we can choose target precision

Make each iteration private

- mirror descent only needs gradient as an input
- sanitize each gradient evaluation

Our approach

Find cut approximator using convex optimization

- mirror descent
- ► iterative technique
- we can choose target precision

Make each iteration private

- mirror descent only needs gradient as an input
- sanitize each gradient evaluation

Bound the total privacy

► Advanced composition theorem

Cut norm

- ightharpoonup graph G^* with weights w^* and adjacency matrix A^*
- ▶ graph G with weights w and adjacency matrix A
- $\blacktriangleright \text{ let } D = A A^*$

Cut norm

- \triangleright graph G* with weights w^* and adjacency matrix A^*
- \triangleright graph G with weights w and adjacency matrix A
- $\blacktriangleright \text{ let } D = A A^*$

Cut norm:

Cut norm

- ightharpoonup graph G^* with weights w^* and adjacency matrix A^*
- \triangleright graph G with weights w and adjacency matrix A
- $\blacktriangleright \text{ let } D = A A^*$

Cut norm:

▶ G approximates all cuts of G^* with additive error $\leq \|D\|_{cut}$

Convex objective

Grothendieck problem:

$$F(D) = \max \left\{ \begin{pmatrix} 0 & D \\ D & 0 \end{pmatrix} \bullet X; \quad X \text{ is symmetric, } X \succeq 0, X_{ii} = 1 \ \forall i \right\}$$

- ▶ constant-factor approximation of $\|D\|_{cut}$ [Alon, Naor '06]
- $ightharpoonup X_{i,j} \in [-1,1]$ for each i,j

Convex objective

Grothendieck problem:

$$F(D) = \text{max} \left\{ \begin{pmatrix} 0 & D \\ D & 0 \end{pmatrix} \bullet X; \quad X \text{ is symmetric, } X \succeq 0, X_{\text{i}i} = 1 \ \forall i \right\}$$

- ightharpoonup constant-factor approximation of $\|D\|_{cut}$ [Alon, Naor '06]
- $ightharpoonup X_{i,j} \in [-1,1]$ for each i,j

Properties:

- ► F(D) is convex
- $ightharpoonup
 abla F(D) = X^*$
- $ightharpoonup X_{i,j}^* \in [-1,1]$ for each i,j

Minimization problem

Optimization problem:

$$\min \left\{ F(A(w) - A^*); \sum_{e} w_e = m \right\}$$

- minimization of convex function
- ▶ bounded gradient: $(\nabla F(D))_{i,j} \in [-1, 1]$

Minimization problem

Optimization problem:

$$\min \left\{ F(A(w) - A^*); \sum_{e} w_e = m \right\}$$

- minimization of convex function
- ▶ bounded gradient: $(\nabla F(D))_{i,j} \in [-1, 1]$

Mirror descent theorem:

▶ after T = m/n iterations:

$$F(A(w) - A^*) \leq \tilde{O}(\sqrt{mn})$$

Stochastic gradient

Stochastic gradient: JL transform

- ▶ release $X^{1/2}\zeta$, where $\zeta \sim N(0, I)$
- stochastic gradient: $S_X = X^{1/2} \zeta \zeta^T X^{1/2}$
- $ightharpoonup \mathbb{E}[S_X] = X$

Stochastic gradient

Stochastic gradient: JL transform

- ▶ release $X^{1/2}\zeta$, where $\zeta \sim N(0, I)$
- stochastic gradient: $S_X = X^{1/2} \zeta \zeta^T X^{1/2}$
- $ightharpoonup \mathbb{E}[S_X] = X$

Privacy of the gradient at iteration t:

$$X = \nabla F(A(w^{(t)}) - A^*)$$
 and $\tilde{X} = \nabla F(A(w^{(t)}) - \tilde{A}^*)$

Stochastic gradient

Stochastic gradient: JL transform

- ▶ release $X^{1/2}\zeta$, where $\zeta \sim N(0, I)$
- stochastic gradient: $S_X = X^{1/2} \zeta \zeta^T X^{1/2}$
- $ightharpoonup \mathbb{E}[S_X] = X$

Privacy of the gradient at iteration t:

$$X = \nabla F(A(w^{(t)}) - A^*)$$
 and $\tilde{X} = \nabla F(A(w^{(t)}) - \tilde{A}^*)$

 $ightharpoonup X^{1/2}\zeta$ and $\tilde{X}^{1/2}\zeta$ have similar distribution:

$$\mathsf{pdf}_X(x) \leqslant e^{\varepsilon_0} \cdot \mathsf{pdf}_{\tilde{X}}(x) \ \mathsf{w.p.} \ (1-\delta_0)$$

$$\varepsilon_0 = O\left(\log \frac{1}{\delta_0}\right) \cdot \sqrt{\operatorname{tr} X^{-1}(\tilde{X} - X)X^{-1}(\tilde{X} - X)}$$

▶ this implies that S_X is (ϵ_0, δ_0) -DP

How stable is ∇F ?

Maximizer of cut norm can change abruptly

$$\|D\|_{\text{cut}} = \text{max}\left\{|D \bullet X|; X = x_I x_J^\mathsf{T}, x_I, x_J \in \{0,1\}^n\right\}$$

How stable is ∇F ?

Maximizer of cut norm can change abruptly

$$\|D\|_{\text{cut}} = \text{max}\left\{|D \bullet X|; X = x_I x_J^\mathsf{T}, x_I, x_J \in \{0,1\}^n\right\}$$

$$F(D) = \max \left\{ \begin{pmatrix} 0 & D \\ D & 0 \end{pmatrix} \bullet X + \underline{\Psi(X)}; \quad X \text{ is symmetric, } X \succeq 0, X_{\text{ii}} = 1 \right\}$$

$$F(D) = \max \left\{ \begin{pmatrix} 0 & D \\ D & 0 \end{pmatrix} \bullet X + \Psi(X); \quad X \text{ is symmetric, } X \succeq 0, X_{ii} = 1 \right\}$$

- $\Psi(X) = \lambda \log \det X$
- \triangleright λ determines the stability but also error

$$F(D) = \max \left\{ \begin{pmatrix} 0 & D \\ D & 0 \end{pmatrix} \bullet X + \Psi(X); \quad X \text{ is symmetric, } X \succeq 0, X_{ii} = 1 \right\}$$

- $\blacktriangleright \Psi(X) = \lambda \log \det X$
- \triangleright λ determines the stability but also error

Why this regularizer?

second directional derivative:

$$D^2\Psi(X)[E, E] = -\lambda \operatorname{tr} X^{-1}EX^{-1}E$$

$$F(D) = \max \left\{ \begin{pmatrix} 0 & D \\ D & 0 \end{pmatrix} \bullet X + \Psi(X); \quad X \text{ is symmetric, } X \succeq 0, X_{\text{ii}} = 1 \right\}$$

- $\blacktriangleright \Psi(X) = \lambda \log \det X$
- \triangleright λ determines the stability but also error

Why this regularizer?

second directional derivative:

$$D^2\Psi(X)[E, E] = -\lambda \operatorname{tr} X^{-1}EX^{-1}E$$

Claim:

▶ If A^* and \tilde{A}^* differ in a single edge, then

$$\sqrt{\operatorname{tr} X^{-1}(\tilde{X} - X)X^{-1}(\tilde{X} - X)} \leqslant O(1/\lambda)$$

Summing up

To get (ϵ, δ) -DP:

▶ we choose

$$\lambda \approx \varepsilon^{-1} \sqrt{m/n}$$

Summing up

To get (ϵ, δ) -DP:

we choose

$$\lambda \approx \varepsilon^{-1} \sqrt{m/n}$$

We solve

$$\begin{split} \mathsf{F}(\mathsf{D}) &= \mathsf{max} \left\{ \begin{pmatrix} 0 & \mathsf{D} \\ \mathsf{D} & 0 \end{pmatrix} \bullet \mathsf{X} + \lambda \log \det \mathsf{X}; \quad \mathsf{X} \text{ symmetric PSD, } \mathsf{X}_{ii} = 1 \right\} \\ & \min \left\{ \mathsf{F} \big(\mathsf{A} - \mathsf{A}(w) \big); \quad \sum w_e = \mathsf{m} \right\} \end{split}$$

ightharpoonup using T = m/n iterations of mirror descent

Summing up

To get (ϵ, δ) -DP:

we choose

$$\lambda \approx \varepsilon^{-1} \sqrt{m/n}$$

We solve

$$F(D) = \max \left\{ \begin{pmatrix} 0 & D \\ D & 0 \end{pmatrix} \bullet X + \lambda \log \det X; \quad X \text{ symmetric PSD, } X_{ii} = 1 \right\}$$

$$\min \left\{ F(A - A(w)); \sum_{e} w_{e} = m \right\}$$

- ightharpoonup using T = m/n iterations of mirror descent
- ▶ privacy (by Advanced composition thm): $\frac{1}{\lambda}\sqrt{T} = \epsilon$
- error due to low number of iterations: $\tilde{O}(\sqrt{mn})$
- ▶ error due to regularization: $\lambda n \log n \leq \tilde{O}(\epsilon^{-1} \sqrt{mn})$

Lower bounds

For (ϵ, δ) -DP mechanism M

- ▶ for $G \sim G(n, p)$,
- M cannot answer all (I, J)-cut queries with error below

$$\Omega(\sqrt{mn/\varepsilon}\cdot(1-c))$$

- connection to discrepancy by Muthukrishnan and Nikolov '12
- evaluating cut sizes is a linear function:
 - $ightharpoonup C \in \mathbb{R}^{2^{2n} \times \binom{n}{2}}$, rows are indicator vectors of cuts
 - Cw evaluates weights of all the cuts
- error is bounded from below by (a variant of) discrepancy of C

Open problems

Matching the guarantee of the exponential mechanism

- ▶ multiplicative error $(1 + \eta)$, additive error $O(n \log n)$
- ▶ in polynomial time?

Open problems

Matching the guarantee of the exponential mechanism

- ightharpoonup multiplicative error $(1+\eta)$, additive error $O(n \log n)$
- ▶ in polynomial time?

Node level privacy

- neighboring graphs differ in whole vertex neighborhoods
- ► any upper or lower bounds?

Questions?

