
Tight bounds for Double Coverage against weak
adversaries?

Nikhil Bansal1, Marek Eliáš1, Lukasz Jeż1,2, Grigorios Koumoutsos1,
and Kirk Pruhs3

1 Eindhoven University of Technology, Netherlands
{n.bansal,m.elias,l.jez,g.koumoutsos}@tue.nl

2 Institute of Computer Science, University of Wroc law, Poland
3 University of Pittsburgh, USA

kirk@cs.pitt.edu

Abstract. We study the Double Coverage (DC) algorithm for the k-
server problem in the (h, k)-setting, i.e., when DC with k servers is com-
pared against an offline optimum algorithm with h ≤ k servers. It is
well-known that DC is k-competitive for h = k. We prove that even if
k > h the competitive ratio of DC does not improve; in fact, it increases
up to h+ 1 as k grows. In particular, we show matching upper and lower
bounds of k(h+1)

k+1
on the competitive ratio of DC on any tree metric.

1 Introduction

We consider the k-server problem defined as follows. There is a metric space and
k servers located on points in it. In each step, a request arrives at one of the
points in the space and must be served by moving some server to that point.
The goal is to minimize the total distance traveled by the servers.

The k-server problem was defined by Manasse et al. [7] as a far reaching
generalization of various online problems. The most well-studied of these is the
paging (caching) problem, which corresponds to k-server on a uniform metric
space. Sleator and Tarjan [8] gave several k-competitive algorithms for paging
and showed that this is the best possible ratio for any deterministic algorithm.

Interestingly, the k-server problem does not seem to get harder on more gen-
eral metrics, and the celebtrated k-server conjecture states that a k-competitive
algorithm exists for every metric space. In a breakthrough result, Koutsoupias
and Papadimitriou [6] showed that the work function algorithm (WFA) is 2k−1
competitive for every metric space, almost resolving the conjecture. The conjec-
ture has been settled for several special metrics (an excellent reference is [2]). In
particular for the line metric, Chrobak et al. [3] gave an elegant k-competitive
algorithm called Double Coverage (DC). This algorithm was later extended and
shown to be k-competitive for all tree metrics [4]. Additionally, in [1] it was
shown that WFA is k-competitive for some special metrics, including the line.

? Supported by NWO grant 639.022.211 and ERC consolidator grant 617951.

1

(h, k)-server problem: In this paper, we consider the (h, k)-setting, where the
online algorithm has k servers, but its performance is compared to an offline
optimal algorithm with h ≤ k servers. This is also known as the weak adversaries
model [5], or the resource augmentation version of k-server. The (h, k)-server
setting turns out to be much more intriguing and is much less understood.

For the uniform metric (the (h, k)-paging problem), k/(k−h+1)-competitive
algorithms are known [8] and no deterministic algorithm can achieve a better
ratio. Note that this guarantee equals k for h = k, and tends to 1 as the ratio of
the number of online to offline servers k/h becomes arbitrarily large. The same
competitive ratio can also be achieved for the weighted caching problem [9].

However, unlike for k-server, the underlying metric space seems to play a
very important role in the (h, k)-setting. Bar-Noy and Schieber (see [2], page
175) showed that for the (2, k)-server problem on a line metric, no deterministic
algorithm can be better than 2-competitive for any k. In particular, the ratio
does not tend to 1 as k increases.

In fact, there is huge gap in our understanding of the problem, even for very
special metrics. For example, for a line no guarantee better than h is known
even when k/h→∞. On the other hand, the only lower bounds known are the
result of Bar-Noy and Schieber mentioned above and a general lower bound of
k/(k − h + 1) for any metric space with at least k + 1 points (cf. [2] for both
results). In particular, no lower bound better than 2 is known for any metric
space and any h > 2, if we let k/h → ∞. The only general upper bound is due
to Koutsoupias [5], who showed that WFA is at most 2h-competitive1 for the
(h, k)-server problem on any metric2.

The DC algorithm: This situation motivates us to consider the (h, k)-server
problem on the line and more generally on trees. In particular, we consider the
DC algorithm [3], defined as follows.

DC-Line: If the current request r lies outside the convex hull of current
servers, serve it with the nearest server. Otherwise, we move the two servers
adjacent to r towards it with equal speed until some server reaches r.

DC-Tree: We move all the servers adjacent to r towards it at equal speed
until some server reaches r. If there are multiple adjacent servers at the same
location, we move one of them arbitrarily. (Note that the set of adjacent servers
can change during the move, and is constantly updated.)

There are several natural reasons to consider DC for line and trees. For
paging (and weighted paging), all known k-competitive algorithms also attain the
optimal ratio for the (h, k) version. This suggests that k-competitive algorithms
for the k-server on the line might attain the “right” ratio for the (h, k)-setting.
DC is the only (other than WFA) deterministic k-server algorithm known for

1 Actually [5] shows a slightly stronger upper bound WFAk ≤ 2hOPTh−OPTk+ const
where OPTk and OPTh are the optimal cost using k and h servers respectively.

2 If the online algorithm knows h, it can simply disable its k− h extra servers and be
2h − 1 competitive (which is slightly better than 2h). However, Koutsoupias (and
also us) consider the setting where the online algorithm does not know h.

2

the line and trees. Moreover, DC obtains the optimum k/(k−h+1)-competitive
ratio for the (h, k)-paging problem3.

It seems plausible that WFA might perform very well for lines and trees as
k increases, but no o(h) bound is known. Most known upper bounds, including
[5], bound the extended cost instead of the actual cost of the algorithm. Using
this approach we can easily show that WFA is (h+ 1)-competitive for the line4.

Our Results: We determine the exact competitive ratio of DC on lines and
trees in the (h, k)-setting.

Theorem 1. The competitive ratio of DC is at least k(h+1)
(k+1) , even for a line.

Note that for a fixed h, the competitive ratio worsens as the number of online
servers k increases! In particular, it equals h for k = h and it approaches h + 1
as k →∞.

Consider the (seemingly trivial) case of h = 1. If k = 1, clearly DC is 1-
competitive. However, for k = 2 it becomes 4/3 competitive5. Generalizing this
example to (1, k) already becomes quite involved. Our lower bound in Theorem
1 for general h and k is based on an adversarial strategy obtained by a careful
recursive construction.

Next, we give a matching upper bound.

Theorem 2. For any tree, the competitive ratio of DC is at most k(h+1)
(k+1) .

This generalizes the previous results for h = k [3, 4]. Our proof also follows
similar ideas, but our potential function is more involved (it has three terms
instead of two) and the analysis is more subtle. To keep the main ideas clear, we
first prove Theorem 2 for the simpler case of a line in Section 3. The proof for
trees is analogous but more involved, and is described in Section 4.

2 Lower Bound

We now prove Theorem 1. We will describe an adversarial strategy Sk for the
setting where DC has k servers and the offline has h servers, and show that
competitive ratio of DC can be made arbitrarily close to k(h+ 1)/(k + 1).

Roughly speaking (and ignoring some details), the strategy Sk works as fol-
lows. Let I = [0, bk] be the working interval associated with Sk where the requests
will arrive. Let L = [0, εbk] and R = [(1 − ε)bk, bk] denote the (tiny) left front
and right front in I. Initially, all the offline and online servers are located in L.

3 This does not seem to be known, so we give a proof in the Appendix.
4 In [1] it is shown that for the line ExtCosth ≤ (h+ 1) OPTh+ const. Moreover in [5]

the monotonicity of extended cost was proven: ExtCostk ≤ ExtCosth. Using same
arguments as in [5] it follows that WFAk ≤ (h+ 1)OPTh− OPTk+ const.

5 Consider the instance where all servers are at x = 0 initially. A request arrives at
x = 2, upon which both DC and offline move a server there and pay 2. Then a
request arrives at x = 1. DC moves both servers there and pays 2 while offline pays
1. All servers are now at x = 1 and the instance repeats.

3

The adversary moves all its h servers to R and starts requesting points in R,
until DC eventually moves all its servers to R. The strategy inside R is defined
recursively depending on the number of DC servers currently in R. Roughly, if
there are i DC servers in R, the adversary executes the strategy Si repeatedly in
the region R, until another DC server moves there, at which point it switches to
the strategy Si+1. When all the DC servers reach R, the adversary moves all its
h servers back to L and repeats the symmetric version of the above instance until
all servers move from R to L. This defines a phase. To show the desired lower
bound, we will recursively bound the online and offline costs incurred during a
phase of Sk in terms of costs incurred by strategies S1, S2, . . . , Sk−1.

request

RL

qL qR
δδ

Fig. 1. DC server is pulled to the right by δ

A crucial parameter of a strategy will be the pull. Recall that DC moves some
server qL closer to R iff qL is the rightmost DC server outside R and a request
is placed to the left of the leftmost DC server qR in R as shown in Figure 1. In
this situation qR moves by δ to the left and qL moves to the right by the same
distance, and we say that the instance in R exerts a pull of δ on L. We will be
interested in the amount of pull exerted by a strategy during one phase.

Formal description: We now give a formal definition of the instance. We begin
by defining the following quantities associated with each strategy Si during a
single phase:

– di, lower bound for the distance moved by DC.
– Ai, upper bound for the distance moved by ADV.
– pi, Pi, lower resp. upper bound for the “pull” exerted on any external DC

servers located to the left of the working interval of Si. Note that, as will be
clear later, by symmetry the same pull is exerted to the right.

For i ≥ h, the ratio ri = di
Ai

would be a lower bound for the competitive ratio of
DC with i servers against adversary with h servers.

We now define the right and left front precisely. Let ε > 0 be a sufficiently
small constant. For i ≥ h, we define the size of working intervals for strategy Si
as sh := h and si+1 := si/ε. Note, that sk = h/εk−h. The working interval for
strategy Sk is [0, sk] and inside it we have two working intervals for strategies
Sk−1: [0, sk−1] and [sk− sk−1, sk]. We continue this construction recursively and
the nesting of these intervals creates a tree-like structure as shown in Figure
2. For i ≥ h, the working intervals for strategy Si are called type-i intervals.
Strategies Si, for i ≤ h, are special and are executed in type-h intervals.

4

Sk•
L R

••Sk−1 Sk−1
...

...• •Sh+2 Sh+2

L RR L

•Sh+1 • •Sh+1•

•
L

Sh

R
•• • •

R
Sh

•
L
••

Fig. 2. Respresentation of strategies and the areas that they define using a binary tree.

It remains to specify the strategies Si.

Strategies Si for i ≤ h: For i ≤ h, strategies Si are performed in an h-type
interval (recall this has length h). Let P be h + 1 points in Sh with distance 1
between consecutive points.

p1p2p3p4phph+1 . . .
points of P

servers of adversary

servers of DC

Fig. 3. Strategy
→
S3, where h ≥ 3.

There are two variants of Si that we call
→
Si and

←
Si. We describe

→
Si in detail,

and the construction of
←
Si will be exactly symmetric. At the beginning of

→
Si, we

will ensure that DC servers occupy rightmost i points of P and offline servers
occupy the rightmost h points of P as shown in Figure 3. The adversary requests
the sequence pi+1, pi, . . . , p1. It is easily verified that DC incurs cost di = 2i, and

its servers will return to the initial position pi, . . . , p1, so we can iterate
→
Si again.

Moreover a pull of pi = 1 = Pi is exerted in both directions.
For i < h, the adversary does not have to move at all and Ai = 0. For i = h,

the offline can serve the sequence with cost Ah = 2, by using the server ph to
serve ph+1 and then moving it back to server ph.

For strategy
←
Si we just number the points of P in the opposite direction

(p1 will be leftmost and ph+1 rightmost). Then request sequence, analysis, and
assumptions about initial position are the same.

Strategies Si for i > h: We define the strategy Si for i > h, assuming that
S1, . . . , Si−1 are defined. Let I denote the working interval for Si. We assume
that, initially, all the offline servers and the DC servers lie in the leftmost (or
analogously rightmost) type-(i− 1) interval of I. Indeed, for Sk this is achieved
by the initial configuration, and for i < k we will ensure this condition before

5

applying the Si strategy. In this case our phase consists of left-to-right step
followed by right-to-left step (analogously, if all the servers start in the rightmost
interval, we apply first right-to-left step followed by left-to-right step to complete
the phase).

Let Lj and Rj denote the leftmost and the rightmost type-j interval con-
tained in I, for h ≤ j < i.

Left-to-right step:

1. Adversary moves all its servers from Li−1 to Rh, specifically to the points

p1, . . . , ph to prepare for the strategy
→
S1. Next, point p1 is requested which

forces DC to move one server to p1 and initial conditions of
→
S1 are satisfied.

2. For j = 1 to h: apply
→
S j to interval Rh until (j+1)-th server arrives to point

pj+1 in Rh. After server j + 1 arrives, we finish the already started request
sequence of Sj , so that DC servers will be lined in points pj+1, . . . , p1 —
ready for strategy Sj+1.

3. For h < j < i: apply Sj to interval Rj until (j + 1)-th server arrives to Rj .
Note, that this was the only DC server moving from Li−1 towards Rj . The
rest are either still in Li−1 or in Rj . Since Rj is the rightmost interval of
Rj+1 and Li−1 ∩Rj+1 = ∅, our configuration is ready for strategy Sj+1.

Right-to-left step: Same as Left-to-right, just replace
→
Sj by

←
Sj , Rj intervals by

Lj , and Lj by Rj .

Bounding Costs: We begin with a simple but useful observation that follows
directly from the definition of DC. For any subset X of i ≤ k consecutive DC
servers, let us call center of mass of X the average position of servers in X. We
call a request external with respect to X, when it is outside the convex hull of
X and internal otherwise.

Lemma 1. For any sequence of internal requests with respect to X, the center
of mass of X remains the same.

Proof. Follows trivially since for any internal request, DC moves precisely two
servers by an equal amount in opposite directions. ut

Let us derive values di, Ai, pi, and Pi assuming that they were already com-
puted for all j < i. We claim that the offline cost Ai for strategy Si during a
phase can be upper bounded as follows.

Ai ≤ 2

(
sih+

i−1∑
j=1

Aj
si
pj

)
= 2si

(
h+

i−1∑
j=h

Aj
pj

)
(1)

The term 2sih follows as offline initially moves the h serves from left of I to
right of I and the then back. The costs Aj

si
pj

are incurred during the phases Sj
for j = 1, . . . , i− 1, because Aj is an upper bound on offline cost during a phase

6

of strategy Sj and si
pj

is an upper bound on the number of iterations of Sj during

Si. This follows because Sj (during left to right phase) executes as long as the
j + 1-th server moves from left of I to right of I. It travels distance at most si
and feels a pull of pj while Sj is executed in R. The equality above follows, as
Aj = 0 for j < h.

We now lower bound the DC cost. Let us denote δ := (1 − 2ε). The length
of I \ (Li−1 ∪ Ri−1) is δsi and all DC servers moving from right to left have to

travel at least this distance. Furthermore, as
δsj
Pj

is a lower bound for the number

of iterations of strategy Sj , we obtain:

di ≥ 2

(
δsii+

i−1∑
j=1

dj
δsi
Pj

)
= 2δsi

(
i+

i−1∑
j=1

dj
Pj

)
(2)

It remains to show the upper and lower bounds on the pull Pi and pi exerted
on external servers due to the (right-to-left step of) strategy Si. Suppose Si is
executing in interval I. Let q denote the closest DC server strictly to the left
of I. Let Q denote the set containing q and all DC servers located in I. The
crucial point is, that during the right-to-left step of Si all requests look internal
with respect to Q. So by Lemma 1, the center of the mass of these servers stays
unchanged. As i servers moved from right to left by distance si during right-
to-left step of Si, this implies that q should have been pulled to the left by the
same total amount, which is at least iδsi and at most isi.

Pi := isi pi := iδsi (3)

Due to a symmetric argument, during the left-to-right step, the same amount of
pull is exerted to the right.

Proof (of Theorem 1). The proof is by induction. In particular, for each i ∈ [h, k]
we will show inductively that

di
Pi
≥ 2iδi−h and Ai

pi
≤ 2(i+ 1)

h+ 1
δ−(i−h) (4)

Setting i = k, this implies the theorem as the competitive ratio rk satisfies

rk ≥
dk
Ak
≥ dk/Pk
Ak/pk

≥ 2k
2(k+1)
h+1

δk−h

δ−(k−h)
=
k(h+ 1)

k + 1
δ2(k−h)

As δ = (1− 2ε), choosing ε� 1/(k− h) small enough δ can be made arbitrarily
close to 1, which implies the result.

Induction base i = h. For the base case we have the exact values of ah and dh,
and, in particular, dh

Ph
= 2h and Ah

ph
= 2.

7

Induction step i > h. Using (1), (2), and (3) we obtain:

di
Pi

=
2δ

i

(
i+

i−1∑
j=1

dj
Pj

)
≥ 2δ

i

(
i+

i−1∑
j=1

2jδj−h
)
≥ 2δ

i
δi−1−h(i+ i(i− 1)) = 2iδi−h

Ai
pi

=
2

iδ

(
h+

i−1∑
j=h

Aj
pj

)
≤ 2

iδ

(
h+

i−1∑
j=h

2(j + 1)

h+ 1
δ−(j−h)

)

≤ 2

iδ
δ−(i−1−h)

(
h(h+ 1) + 2

∑i−1
j=h(j + 1)

h+ 1

)
=

2

iδi−h
i(i+ 1)

h+ 1
=

2(i+ 1)

h+ 1
δ−(i−h)

The last inequality follows as 2
∑i−1
j=h(j + 1) = i(i+ 1)− h(h+ 1). ut

3 Upper Bound

In this section, we show tightness of the lower bound from the previous section.
By OPT we denote the optimal offline algorithm.

Let r be a request issued at time t. Let X denote configuration of DC (i.e.
the set of points in the line where DC servers are located) and Y configuration of
adversary before serving request r. Similarly, let X ′ and Y ′ be the corresponding
configurations after serving r. In order to prove our upper bound, we define a
potential function Φ(X,Y) such that

DC(t) + Φ(X ′, Y ′)− Φ(X,Y) ≤ c ·OPT (t), (5)

where c = k(h+1)
k+1 is the desired competitive ratio, and DC(t) and OPT (t) denote

the cost incurred by DC and OPT at time t.
Let M ⊆ X be some fixed set of h servers of DC and M(M,Y) denote the

cost of the minimum weight perfect matching between M and Y . We denote

ΨM (X,Y) :=
k(h+ 1)

k + 1
· M(M,Y) +

k

k + 1
·DM .

Here, for a set of points A, DA denotes the sum of all
(|A|

2

)
pairwise distances

between points in A. The potential function is defined as follows:

Φ(X,Y) = min
M

ΨM (X,Y) +
1

k + 1
·DX

= min
M

(
k(h+ 1)

k + 1
· M(M,Y) +

k

k + 1
·DM

)
+

1

k + 1
·DX .

As opposed to analysis of the h = k setting where all DC servers are matched,
we need to select the right set M of DC servers to minimize whole ΨM (X,Y).

8

Let us first give a useful property concerning minimizers of Ψ , which will be
crucial later in our analysis. Note that ΨM (X,Y) is not simply the best matching
between X and Y , but also includes the term DM which makes the argument
slightly subtle. We prove this lemma directly for trees, since it will be also useful
in the following section.

Lemma 2. Let X and Y be the configurations of DC and OPT and consider
some fixed offline server at location y ∈ Y . There exists a minimizer M of Ψ
that contains some DC server x which is adjacent to y. Moreover, there is a
minimum cost matching M between M and Y that matches x to y6.

Proof. Let M ′ be some minimizer of ΨM (X,Y), and M′ be some associated
minimum cost matching between M ′ and Y . Let x′ denote the online server
currently matched to y inM′. We denote x the adjacent server to y, in the path
from y to x′.

We will show that we can always modify the matching (and M ′) without
increasing the cost of Φ, so that y is matched to x. We consider two cases.

1. If x ∈ M ′: Let us call y′ the offline server which is matched to x in M′.
We swap the edges and match x to y and x′ to y′. The cost of the edge
connecting y in the matching reduces by exactly d(x′, y)−d(x, y) = d(x′, x).
On the other hand, the cost of the matching edge for y′ increases by d(x′, y′)−
d(x, y′) ≤ d(x, x′). Thus, the new matching has no larger cost. Moreover, the
set of matched servers M = M ′ and hence DM = DM ′ , which implies that
ΨM (X,Y) ≤ ΨM ′(X,Y).

2. If x /∈M ′: In this case, we set M = M ′ \{x′}∪{x} and we formM, where y
is matched to x and all other offline servers are matched to the same server as
inM′. Now, the cost of the matching reduces by d(x′, y)− d(x, y) = d(x, x′)
and DM ≤ DM ′ +(h−1) ·d(x, x′) (as the distance of each server in M ′ \{x′}
to x can be greater than the distance to x′ by at most d(x, x′)). This gives

ΨM (X,Y)− ΨM ′(X,Y) ≤ − (h+ 1)k

k + 1
· d(x, x′) +

k(h− 1)

k + 1
· d(x, x′)

= − 2k

k + 1
· d(x, x′) < 0 ,

and hence ΨM (X,Y) is strictly smaller than ΨM ′(X,Y).

ut

We are now ready to prove Theorem 2 for the line.

Proof. Recall, that we are at time t and request r is arriving. We divide the
analysis into two steps: (i) the offline serves r and then (ii) the online serves it.
As a consequence, whenever a server of DC serves r, we can assume that a server
of OPT is already there.

6 We remark that this property does not hold (simultaneously) for every offline server,
but only for a single fixed offline server y.

9

For all following steps considered, M will be the minimizer of ΨM (X,Y) in
the beginning of the step. It might happen that, after change of X,Y during the
step, better minimizer can be found. However, upper bound for ∆ΨM (X,Y) will
still be sufficient to bound the change in the first term of the potential function.

Offline moves: If offline moves one of its servers by distance d to serve r the

value of ΨM (X,Y) increases by at most k(h+1)
k+1 d. As OPT (t) = d and X does

not change, it follows that

∆Φ(X,Y) ≤ k(h+ 1)

k + 1
·OPT (t) ,

and hence (5) holds. We now consider the second step when DC moves.

DC moves: We consider two cases depending on whether DC moves a single
server or two servers.

1. Suppose DC moves its rightmost server (the leftmost server case is identical)
by distance d. Let y denote the offline server at r. By Lemma 2 we can
assume that y is matched to the rightmost server of DC. Thus, the cost of
the minimum cost matching between M and Y decreases by d. Moreover DM

increases by exactly (h − 1)d (as the distance to rightmost server increases
by d for all servers of DC). Thus, ΨM (X,Y) changes by

−k(h+ 1)

k + 1
· d+

k(h− 1)

k + 1
· d = − 2k

k + 1
· d .

Similarly, DX increases by exactly (k − 1)d. This gives us that

∆Φ(X,Y) ≤ − 2k

k + 1
· d+

k − 1

k + 1
· d = −d .

As DC(t) = d, this implies that (5) holds.
2. We now consider the case when DC moves 2 servers x and x′, each by distance
d. Let y denote the offline server at the request r. By Lemma 2 applied to
y, we can assume that the minimizer M contains at least one of x or x′, and
that y is matched to one of them (say x) in some minimum cost matching
M of M to Y .
We note that DX decreases by precisely 2d. In particular, the distance be-
tween x and x′ decreases by 2d, and for any other server of X\{x, x′} its total
distance to other servers does not change. Moreover, DC(t) = 2d. Hence, to
prove (5), it suffices to show

∆ΨM (X,Y) ≤ − k

k + 1
· 2d . (6)

To this end, we consider two sub-cases.
(a) Both x and x′ are matched: In this case, the cost of the matching M

does not go up as the cost of the matching edge (x, y) decreases by d
and the cost of matching edge to x′ can increase by at most d. Moreover,
DM decreases by precisely 2d (due to x and x′ moving closer). Thus,
∆ΨM (X,Y) ≤ − k

k+1 · 2d, and hence (6) holds.

10

(b) Only x is matched (to y) and x′ is unmatched: In this case, the cost of
the matchingM decreases by d. Moreover, DM can increase by at most
(h − 1)d, as x can move away from each server in M \ {x} by distance
at most d. So

∆ΨM (X,Y) ≤ − (h+ 1)k

k + 1
· d+

k(h− 1)

k + 1
· d = − 2k

k + 1
· d ,

i.e., (6) holds.

ut

4 Extension to trees

We now consider tree metrics. Specifically, we prove Theorem 2. Part of the anal-
ysis carries over from the previous section. We use the same potential function
as for the line. Observe that Lemma 2 holds for trees as well: We only used the
triangle inequality and the fact that there exists a unique path between any two
points.

Proof (of Theorem 2). The analysis of the step when offline moves is exactly the
same as for the line. In particular if the offline algorithm moves by distance x,
only the matching cost is affected in the potential function and it can increase
by at most x · k(h+ 1)/(k + 1).

It remains to analyze the change in the potential caused by the moves of
DC. In that case, we break down the DC move into elementary moves. Let us
call active servers the servers adjacent to the requested point r, i.e., the ones
which are moving. An elementary move ends when any server reaches either the
request r or a vertex of the tree. In the latter case, another elementary move
immediately follows, perhaps with a different set of active servers. We are going
to prove that (5) holds for every elementary move. By summation, this implies
that it holds for the entire DC move.

Consider an elementary move where q servers are moving by distance d. We
need to etablish some notation first: Let M be a minimizer of ΨM (X,Y) at the
beginning of the step and A be the set of active servers. Let us imagine for now,
that the requested point r is the root of the whole tree. For a ∈ A let Qa denote
the set of DC servers in the subtree below a (but including a). We set qa := |Qa|
and ha := |Qa ∩M |. Finally, let AM := A ∩M .

By Lemma 2, we can assume that one of the active servers is matched to
offline server in r. We get that M(M,Y) increases by at most (|AM | − 2) · d.

In order to calculate the change in DX and DM , it is convenient to consider
the moves of active servers sequentially rather than simultaneously.

For DX , it is clear that each a ∈ A, moves further away from qa − 1 DC
servers by distance d and gets closer to k − qa by the same distance. Thus, the
change of DX associated with a is (qa− 1− (k− qa))d = (2qa− k− 1)d. Overall,

∆DX =
∑
a∈A

(2qa − k − 1)d = (2k − q(k + 1)) d, as
∑
a∈A qa = k.

11

Similarly, forDM , we first note that it can change only due to moves of servers
in AM . Specifically, each a ∈ AM , moves further away from ha− 1 matched DC
servers and gets closer to the rest h − ha of them. Thus, the change of DM

associated with a is (2ha − h− 1)d, so overall we have

∆DM =
∑
a∈AM

(2ha − h− 1)d ≤ (2h− |AM |(h+ 1)) d,

as
∑
a∈AM

ha ≤
∑
a∈A ha = h.

Using above inequalities, we see that the change of potential is at most

∆Φ(X,Y) ≤ d

k + 1
(k(h+ 1)(|AM | − 2) + k (2h− |AM |(h+ 1)) + (2k − q(k + 1)))

=
d

k + 1
(−2k(h+ 1) + 2kh+ (2k − q(k + 1)))

=
d

k + 1
(−2k + (2k − q(k + 1)))

=
d

k + 1
(−q(k + 1)) = −q · d ,

As the cost of DC is q · d, we get that (5) holds, which completes the proof. ut

References

1. Bartal, Y., Koutsoupias, E.: On the competitive ratio of the work function algo-
rithm for the k-server problem. Theor. Comput. Sci. 324(2–3), 337–345 (2004), also
appeared in Proc. of the 17th Symp. on Theor. Aspects of Comput. Sci. (STACS),
pages 605–613, 2000

2. Borodin, A., El-Yaniv, R.: Online computation and competitive analysis. Cambridge
University Press (1998)

3. Chrobak, M., Karloff, H.J., Payne, T.H., Vishwanathan, S.: New results on server
problems. SIAM J. Discrete Math. 4(2), 172–181 (1991), also appeared in Proc. of
the 1st ACM-SIAM Symp. on Discrete Algorithms (SODA), pp. 291–300, 1990

4. Chrobak, M., Larmore, L.L.: An optimal on-line algorithm for k-servers on trees.
SIAM J. Comput. 20(1), 144–148 (1991)

5. Koutsoupias, E.: Weak adversaries for the k-server problem. In: Proc. of the 40th
Symp. on Foundations of Computer Science (FOCS). pp. 444–449 (1999)

6. Koutsoupias, E., Papadimitriou, C.H.: On the k-server conjecture. J. ACM 42(5),
971–983 (1995), also appeared in Proc. of the 26th Symp. on Theory of Computing
(STOC), pp. 507–511, 1994

7. Manasse, M.S., McGeoch, L.A., Sleator, D.D.: Competitive algorithms for server
problems. J. ACM 11(2), 208–230 (1990), also appeared as Competitive algorithms
for on-line problems in Proc. of the 20th Symp. on Theory of Computing (STOC),
pages 322–333, 1988

8. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules.
Commun. ACM 28(2), 202–208 (1985)

9. Young, N.E.: The k-server dual and loose competitiveness for paging. Algorithmica
11(6), 525–541 (1994)

12

A DC for paging

The paging problem is the special case of k-server on a uniform metric. Equiva-
lently 7, we can consider the k-server problem on a star graph, where all edges
have weight 1

2 and requests appear at the leaves. It known that (h, k)-paging has

a deterministic competitive ratio of k
k−h+1 . However, we are not aware of any

explicit proof showing that DC also achieves this ratio. We give such a proof
using a potential function.

Let X and Y denote the configurations of DC and OPT respectively. Note
that any server of DC can only be at the root or at a leaf, and servers of OPT
can only be at leaves.

We define

Φ(t) =
−k − h+ 1

2(k − h+ 1)
`+

k

k − h+ 1
|Y \X|

Where ` is the number of DC servers at the root.
Analysis: As usual, we consider separately moves of DC and OPT. We assume

that, whenever a point is requested, first OPT moves a server there and then
DC moves its servers.

Offline moves: When optimal moves any single server from one leaf to another
it pays 1. The first term of the potential is not affected while the second can
increase by at most one. We get that ∆Φ ≤ k

k−h+1 = k
k−h+1 ·OPT .

DC moves: Let us now consider moves of DC. We distinguish between two
cases depending on whether it moves one or more servers.

– ` > 0: In this case, DC moves one server from the root to the requested leaf,
so DC pays 1/2. The number of servers at the root ` decreases by 1 and the
second term decreases by 1. We get

∆Φ =
k + h− 1

2(k − h+ 1)
− k

k − h+ 1
=
−k + h− 1

2(k − h+ 1)
= −1

2

and hence DC +∆Φ = 0.
– ` = 0: In the case, DC moves all the servers from the leaves toward the root

(and then we go to the case above). In that case DC occurs a cost of k/2.
Let us call a the number of online servers that coincide with servers of OPT
before the move of DC. Then ` is increasing by k while |Y \X| increases by
a. We get that

∆Φ =
−k − h+ 1

2(k − h+ 1)
k +

k

k − h+ 1
a

Observe that a ≤ h− 1, as there is an OPT at the current request that was
not covered when DC started moving. Thus we can upper bound ∆Φ as:

∆Φ ≤ −k − h+ 1 + 2(h− 1)

2(k − h+ 1)
k =

−k + h− 1

2(k − h+ 1)
k = − k − h+ 1

2(k − h+ 1)
k = −k

2

Overall we get that DC +∆Φ ≤ k
2 −

k
2 = 0.

7 up to a fixed additive term

13

