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Abstract. We study the Double Coverage (DC) algorithm for the k-
server problem in the (h, k)-setting, i.e. when DC with k servers is com-
pared against an offline optimum algorithm with h ≤ k servers. It is
well-known that DC is k-competitive for h = k. We prove that even if
k > h the competitive ratio of DC does not improve; in fact, it increases
up to h+ 1 as k grows. In particular, we show matching upper and lower
bounds of k(h+1)

k+1
on the competitive ratio of DC on any tree metric.

1 Introduction

We consider the k-server problem defined as follows. There are k servers located
on points of a metric space. In each step, a request arrives at some point of the
metric space and must be served by moving some server to that point. The goal
is to minimize the total distance travelled by the servers.

The k-server problem was defined by Manasse et al. [7] as a far reaching
generalization of various online problems. The most well-studied of those is the
paging (caching) problem, which corresponds to k-server on a uniform metric
space. Sleator and Tarjan [8] gave several k-competitive algorithms for paging
and showed that this is the best possible ratio for any deterministic algorithm.

Interestingly, the k-server problem does not seem to get harder on more gen-
eral metrics and the celebrated k-server conjecture states that a k-competitive
deterministic algorithm exists for every metric space. In a breakthrough result,
Koutsoupias and Papadimitriou [6] showed that the work function algorithm
(WFA) is 2k − 1 competitive for every metric space, almost resolving the con-
jecture. The conjecture has been settled for several special metrics (an excellent
reference is [2]). In particular for the line metric, Chrobak et al. [3] gave an
elegant k-competitive algorithm called Double Coverage (DC). This algorithm
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was later extended and shown to be k-competitive for all tree metrics [4]. Addi-
tionally, in [1] it was shown that WFA is k-competitive for some special metrics,
including the line.

(h, k)-server problem: In this paper, we consider the (h, k)-setting, where the
online algorithm has k servers, but its performance is compared to an offline
optimal algorithm with h ≤ k servers. This is also known as the weak adversaries
model [5], or the resource augmentation version of k-server. The (h, k)-server
setting turns out to be much more intriguing and is much less understood.

For the uniform metric (the (h, k)-paging problem), k/(k−h+1)-competitive
algorithms are known [8] and no deterministic algorithm can achieve a better
ratio. Note that this guarantee equals k for h = k, and tends to 1 as the ratio of
the number of online to offline servers k/h becomes arbitrarily large. The same
competitive ratio can also be achieved for the weighted caching problem [9].

However, unlike for k-server, the underlying metric space seems to play a
very important role in the (h, k)-setting. Bar-Noy and Schieber (see [2], page
175) showed that for the (2, k)-server problem on a line metric, no deterministic
algorithm can be better than 2-competitive for any k. In particular, the ratio
does not tend to 1 as k increases.

In fact, there is huge gap in our understanding of the problem, even for very
special metrics. For example, for the line no guarantee better than h is known
even when k/h→∞. On the other hand, the only lower bounds known are the
result of Bar-Noy and Schieber mentioned above and a general lower bound of
k/(k − h + 1) for any metric space with at least k + 1 points (cf. [2] for both
results). In particular, no lower bound better than 2 is known for any metric
space and any h > 2, if we let k/h → ∞. The only general upper bound is due
to Koutsoupias [5], who showed that WFA is at most 2h-competitive1 for the
(h, k)-server problem on any metric2.

The DC algorithm: This situation motivates us to consider the (h, k)-server
problem on the line and more generally on trees. In particular, we consider the
DC algorithm [3], defined as follows.

DC-Line: If the current request r lies outside the convex hull of current
servers, serve it with the nearest server. Otherwise, we move the two servers
adjacent to r towards it with equal speed until some server reaches r. If there are
multiple adjacent servers at the same location, we move one of them arbitrarily.

DC-Tree: We move all the servers adjacent to r towards it at equal speed
until some server reaches r. (Note that the set of adjacent servers can change
during the move, and is constantly updated.)

There are several natural reasons to consider DC for line and trees. For
paging (and weighted paging), all known k-competitive algorithms also attain the

1 Actually [5] shows a slightly stronger upper bound WFAk ≤ 2hOPTh−OPTk+ const
where OPTk and OPTh are the optimal cost using k and h servers respectively.

2 If the online algorithm knows h, it can simply disable its k− h extra servers and be
2h − 1 competitive (which is slightly better than 2h). However, Koutsoupias (and
also us) consider the setting where the online algorithm does not know h.
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optimal ratio for the (h, k) version. This suggests that k-competitive algorithms
for the k-server on the line might attain the “right” ratio for the (h, k)-setting.
DC is the only (other than WFA) deterministic k-server algorithm known for
the line and trees. Moreover, DC obtains the optimum k/(k−h+1)-competitive
ratio for the (h, k)-paging problem3.

It seems plausible that WFA might perform very well for lines and trees as
k increases, but no o(h) bound is known. Most known upper bounds, including
[5], bound the extended cost instead of the actual cost of the algorithm. Using
this approach we can easily show that WFA is (h+ 1)-competitive for the line4.

Our Results: We determine the exact competitive ratio of DC on lines and
trees in the (h, k)-setting.

Theorem 1. The competitive ratio of DC is at least k(h+1)
(k+1) , even for a line.

Note that for a fixed h, the competitive ratio worsens as the number of online
servers k increases! In particular, it equals h for k = h and it approaches h + 1
as k →∞.

Consider the (seemingly trivial) case of h = 1. If k = 1, clearly DC is 1-
competitive. However, for k = 2 it becomes 4/3 competitive5. Generalizing this
example to (1, k) already becomes quite involved. Our lower bound in Theorem
1 for general h and k is based on an adversarial strategy obtained by a careful
recursive construction.

Next, we give a matching upper bound.

Theorem 2. For any tree, the competitive ratio of DC is at most k(h+1)
(k+1) .

This generalizes the previous results for h = k [3, 4]. Our proof also follows
similar ideas, but our potential function is more involved (it has three terms
instead of two) and the analysis is more subtle. To keep the main ideas clear, we
first prove Theorem 2 for the simpler case of a line in Section 3. The proof for
trees is analogous but more involved, and is described in Section 4.

2 Lower Bound

We now prove Theorem 1. We will describe an adversarial strategy Sk for the
setting where DC has k servers and the offline optimum (adversary) has h servers

3 Here, we view the uniform metric as a star graph where requests appear to the leaves.
A proof of this result will be given in the full version of the paper.

4 In [1] it is shown that for the line ExtCosth ≤ (h+ 1) OPTh+ const. Moreover in [5]
the monotonicity of extended cost was proven: ExtCostk ≤ ExtCosth. Using same
arguments as in [5] it follows that WFAk ≤ (h+ 1)OPTh− OPTk+ const.

5 Consider the instance where all servers are at x = 0 initially. A request arrives at
x = 2, upon which both DC and offline move a server there and pay 2. Then a
request arrives at x = 1. DC moves both servers there and pays 2 while offline pays
1. All servers are now at x = 1 and the instance repeats.
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and then show that the competitive ratio of DC can be made arbitrarily close
to k(h+ 1)/(k + 1).

Roughly speaking (and ignoring some details), the strategy Sk works as fol-
lows. Let I = [0, bk] be the working interval associated with Sk. Let L = [0, εbk]
and R = [(1−ε)bk, bk] denote the (tiny) left front and right front of I. Initially, all
offline and online servers are located in L. The adversary moves all its h servers
to R and starts requesting points in R, until DC eventually moves all its servers
to R. The strategy inside R is defined recursively depending on the number of
DC servers currently in R. Roughly, if DC has i servers in R, the adversary exe-
cutes the strategy Si repeatedly inside R, until another DC server moves there,
at which point it switches to the strategy Si+1. When all DC servers reach R, the
adversary moves all its h servers back to L and repeats the symmetric version of
the above instance until all servers move from R to L. This defines a phase. To
show the desired lower bound, we recursively bound the online and offline costs
during a phase of Sk in terms of costs incurred by strategies S1, S2, . . . , Sk−1.

request

RL

qL qR
δδ

Fig. 1. DC server is pulled to the right by δ

A crucial parameter of a strategy will be the pull. Recall that DC moves
some server qL closer to R if and only if qL is the rightmost DC server outside R
and a request is placed to the left of qR, the leftmost DC server in R, as shown
in Figure 1. In this situation qR moves by δ to the left and qL moves to the right
by the same distance, and we say that the instance in R exerts a pull of δ on
qL. We will be interested in the amount of pull exerted by a strategy during one
phase.

Formal description: We now give a formal definition of the instance. We begin
by defining the following quantities associated with each strategy Si during a
single phase:

– di, lower bound for the cost of DC inside the working interval.
– Ai, upper bound for the cost of the adversary.
– pi, Pi, lower resp. upper bound for the “pull” exerted on any external DC

servers located to the left of the working interval of Si. Note that, as will be
clear later, by symmetry the same pull is exerted to the right.

For i ≥ h, the ratio ri = di
Ai

is a lower bound for the competitive ratio of DC
with i servers against adversary with h servers.

We now define the right and left front precisely. Let ε > 0 be a sufficiently
small constant. For i ≥ h, we define the size of working intervals for strategy Si
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as sh := h and si+1 := si/ε. Note that sk = h/εk−h. The working interval for
strategy Sk is [0, sk] and inside it we have two working intervals for strategies
Sk−1: [0, sk−1] and [sk− sk−1, sk]. We continue this construction recursively and
the nesting of these intervals creates a tree-like structure as shown in Figure
2. For i ≥ h, the working intervals for strategy Si are called type-i intervals.
Strategies Si, for i ≤ h, are special and are executed in type-h intervals.

Sk•
L R

••Sk−1 Sk−1
...

...• •Sh+2 Sh+2

L RR L

•Sh+1 • •Sh+1•

•
L

Sh

R
•• • •

R
Sh

•
L
••

Fig. 2. Representation of strategies and the areas that they define using a binary tree.

Strategies Si for i ≤ h: For i ≤ h, strategies Si are performed in a type-h
interval (recall this has length h). Let Q be h+1 points in such an interval, with
distance 1 between consecutive points.

q1q2q3q4qhqh+1 . . .
points of Q

servers of adversary

servers of DC

Fig. 3. Strategy
→
S3, where h ≥ 3.

There are two variants of Si that we call
→
Si and

←
Si. We describe

→
Si in detail,

and the construction of
←
Si will be exactly symmetric. At the beginning of

→
Si,

we will ensure that DC servers occupy the rightmost i points of Q and offline
servers occupy the rightmost h points of Q as shown in Figure 3. The adversary
requests the sequence qi+1, qi, . . . , q1. It is easily verified that DC incurs cost
di = 2i, and its servers will return to the initial position qi, . . . , q1, so we can

iterate
→
Si again. Moreover, a pull of pi = 1 = Pi is exerted in both directions.

For i < h, the adversary does not have to move at all, thus Ai = 0. For i = h,
the offline can serve the sequence with cost Ah = 2, by using the server in qh to
serve request in qh+1 and then moving it back to qh.
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For strategy
←
Si we just number the points of Q in the opposite direction

(q1 will be leftmost and qh+1 rightmost). The request sequence, analysis, and
assumptions about initial position are the same.

Strategies Si for i > h: We define the strategy Si for i > h, assuming that
S1, . . . , Si−1 are defined. Let I denote the working interval for Si. We assume
that, initially, all offline and DC servers lie in the leftmost (or analogously right-
most) type-(i−1) interval of I. Indeed, for Sk this is achieved by the initial con-
figuration, and for i < k we will ensure this condition before applying strategy
Si. In this case our phase consists of left-to-right step followed by right-to-left
step (analogously, if all servers start in the rightmost interval, we apply first
right-to-left step followed by left-to-right step to complete the phase).

Let Lj and Rj denote the leftmost and the rightmost type-j interval con-
tained in I, for h ≤ j < i.

Left-to-right step:

1. Adversary moves all its servers from Li−1 to Rh, specifically to the points

q1, . . . , qh to prepare for the strategy
→
S1. Next, point q1 is requested which

forces DC to move one server to q1 and initial conditions of
→
S1 are satisfied.

2. For j = 1 to h: apply
→
S j to interval Rh until (j+1)-th server arrives to point

qj+1 in Rh. After server j + 1 arrives, we finish the already started request

sequence of
→
Sj , so that DC servers will be lined in points qj+1, . . . , q1 —

ready for strategy
→
Sj+1.

3. For h < j < i: apply
→
Sj to interval Rj until (j + 1)-th server arrives to Rj .

Note that it was the only DC server moving from Li−1 towards Rj . The rest
are either still in Li−1 or in Rj . Since Rj is the rightmost interval of Rj+1

and Li−1 ∩Rj+1 = ∅, our configuration is ready for strategy
→
Sj+1.

Right-to-left step: Same as Left-to-right, just replace
→
Sj by

←
Sj , Rj intervals by

Lj , and Lj by Rj .

Bounding Costs: We begin with a simple but useful observation that follows
directly from the definition of DC. For any subset X of i ≤ k consecutive DC
servers, let us call center of mass of X the average position of servers in X. We
call a request external with respect to X, when it is outside the convex hull of
X and internal otherwise.

Lemma 1. For any sequence of internal requests with respect to X, the center
of mass of X remains the same.

Proof. Follows trivially since for any internal request, DC moves precisely two
servers by an equal amount in opposite directions. ut

Let us derive values di, Ai, pi, and Pi assuming that they were already com-
puted for all j < i. We claim that the offline cost Ai for strategy Si during a
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phase can be upper bounded as follows.

Ai ≤ 2

(
sih+

i−1∑
j=1

Aj
si
pj

)
= 2si

(
h+

i−1∑
j=h

Aj
pj

)
(1)

The term 2sih follows as offline initially moves the h serves from left of I to
right of I and the then back. The costs Aj

si
pj

are incurred during the phases Sj
for j = 1, . . . , i− 1, because Aj is an upper bound on offline cost during a phase
of strategy Sj and si

pj
is an upper bound on the number of iterations of Sj during

Si. This follows because Sj (during left to right phase) executes as long as the
(j + 1)-th server moves from left of I to right of I. It travels distance at most si
and feels a pull of pj while Sj is executed in R. The equality above follows, as
Aj = 0 for j < h.

We now lower bound the cost of DC. Let us denote δ := (1− 2ε). The length
of I \ (Li−1 ∪ Ri−1) is δsi and all DC servers moving from right to left have to

travel at least this distance. Furthermore, as
δsj
Pj

is a lower bound for the number

of iterations of strategy Sj , we obtain:

di ≥ 2

(
δsii+

i−1∑
j=1

dj
δsi
Pj

)
= 2δsi

(
i+

i−1∑
j=1

dj
Pj

)
(2)

It remains to show the upper and lower bounds on the pull Pi and pi exerted
on external servers due to the (right-to-left step of) strategy Si. Suppose Si is
executing in interval I. Let x denote the closest DC server strictly to the left
of I. Let X denote the set containing x and all DC servers located in I. The
crucial point is, that during the right-to-left step of Si all requests are internal
with respect to X. So by Lemma 1, the center of the mass of X stays unchanged.
As i servers moved from right to left during right-to-left step of Si, this implies
that q should have been pulled to the left by the same total amount, which is at
least iδsi and at most isi.

Pi := isi pi := iδsi (3)

Due to a symmetric argument, during the left-to-right step, the same amount of
pull is exerted to the right.

Proof (of Theorem 1). The proof is by induction. In particular, for each i ∈ [h, k]
we will show inductively that

di
Pi
≥ 2iδi−h and Ai

pi
≤ 2(i+ 1)

h+ 1
δ−(i−h) (4)

Setting i = k, this implies the theorem as the competitive ratio rk satisfies

rk ≥
dk
Ak
≥ dk/Pk
Ak/pk

≥ 2k
2(k+1)
h+1

δk−h

δ−(k−h)
=
k(h+ 1)

k + 1
δ2(k−h)

Choosing ε� 1/(k−h) small enough, δ = (1−2ε) can be made arbitrarily close
to 1, which implies the result.
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Induction base i = h. For the base case we have the exact values of ah and dh,
and, in particular, dh

Ph
= 2h and Ah

ph
= 2.

Induction step i > h. Using (1), (2), and (3) we obtain:

di
Pi

=
2δ

i

(
i+

i−1∑
j=1

dj
Pj

)
≥ 2δ

i

(
i+

i−1∑
j=1

2jδj−h
)
≥ 2δ

i
δi−1−h(i+ i(i− 1)) = 2iδi−h

Ai
pi

=
2

iδ

(
h+

i−1∑
j=h

Aj
pj

)
≤ 2

iδ

(
h+

i−1∑
j=h

2(j + 1)

h+ 1
δ−(j−h)

)

≤ 2

iδ
δ−(i−1−h)

(
h(h+ 1) + 2

∑i−1
j=h(j + 1)

h+ 1

)
=

2

iδi−h
i(i+ 1)

h+ 1
=

2(i+ 1)

h+ 1
δ−(i−h)

The last inequality follows as 2
∑i−1
j=h(j + 1) = i(i+ 1)− h(h+ 1). ut

3 Upper Bound

In this section, we give an algorithm that matches the lower bound from the
previous section. By OPT we denote the optimal offline algorithm.

Let r be a request issued at time t. Let X denote the configuration of DC (i.e.
the set of points in the line where DC servers are located) and Y the configuration
of OPT before serving request r. Similarly, let X ′ and Y ′ be the corresponding
configurations after serving r. In order to prove our upper bound, we define a
potential function Φ(X,Y ) such that

DC(t) + Φ(X ′, Y ′)− Φ(X,Y ) ≤ c ·OPT (t), (5)

where c = k(h+1)
k+1 is the desired competitive ratio, and DC(t) and OPT (t) denote

the cost incurred by DC and OPT at time t.
Let M ⊆ X be some fixed set of h servers of DC and M(M,Y ) denote the

cost of the minimum weight perfect matching between M and Y . We denote

ΨM (X,Y ) :=
k(h+ 1)

k + 1
· M(M,Y ) +

k

k + 1
·DM .

Here, for a set of points A, DA denotes the sum of all
(|A|

2

)
pairwise distances

between points in A. The potential function is defined as follows:

Φ(X,Y ) = min
M

ΨM (X,Y ) +
1

k + 1
·DX

= min
M

(
k(h+ 1)

k + 1
· M(M,Y ) +

k

k + 1
·DM

)
+

1

k + 1
·DX .
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Note this generalizes the potential considered in [3] for the case of h = k.
In that setting, all the online servers are matched and hence DM = DX and is
independent of M , and thus the potential above becomes k times that minimum
cost matching between X and Y plus Dx. On the other hand in our setting, we
need to select the right set M of DC servers to be matched to the offline servers
based on minimizing ΨM (X,Y ).

Let us first give a useful property concerning minimizers of Ψ , which will be
crucial later in our analysis. Note that ΨM (X,Y ) is not simply the best matching
between X and Y , but also includes the term DM which makes the argument
slightly subtle. We prove this lemma directly for trees, since it will be also useful
in the following section.

Lemma 2. Let X and Y be the configurations of DC and OPT and consider
some fixed offline server at location y ∈ Y . There exists a minimizer M of Ψ
that contains some DC server x which is adjacent to y. Moreover, there is a
minimum cost matching M between M and Y that matches x to y6.

Proof. Let M ′ be some minimizer of ΨM (X,Y ) and M′ be some associated
minimum cost matching between M ′ and Y . Let x′ denote the online server
currently matched to y in M′ and suppose that x′ is not adjacent to y. We
denote x the adjacent server to y, in the path from y to x′.

We will show that we can always modify the matching (and M ′) without
increasing the cost of Φ, so that y is matched to x. We consider two cases
depending on whether x is matched or unmatched.

1. If x ∈ M ′: Let us call y′ the offline server which is matched to x in M′.
We swap the edges and match x to y and x′ to y′. The cost of the edge
connecting y in the matching reduces by exactly d(x′, y)−d(x, y) = d(x′, x).
On the other hand, the cost of the matching edge for y′ increases by d(x′, y′)−
d(x, y′) ≤ d(x, x′). Thus, the new matching has no larger cost. Moreover, the
set of matched servers M = M ′ and hence DM = DM ′ , which implies that
ΨM (X,Y ) ≤ ΨM ′(X,Y ).

2. If x /∈M ′: In this case, we set M = M ′ \{x′}∪{x} and we formM, where y
is matched to x and all other offline servers are matched to the same server as
inM′. Now, the cost of the matching reduces by d(x′, y)− d(x, y) = d(x, x′)
and DM ≤ DM ′ +(h−1) ·d(x, x′) (as the distance of each server in M ′ \{x′}
to x can be greater than the distance to x′ by at most d(x, x′)). This gives

ΨM (X,Y )− ΨM ′(X,Y ) ≤ − (h+ 1)k

k + 1
· d(x, x′) +

k(h− 1)

k + 1
· d(x, x′)

= − 2k

k + 1
· d(x, x′) < 0 ,

and hence ΨM (X,Y ) is strictly smaller than ΨM ′(X,Y ).

6 We remark that this property does not hold (simultaneously) for every offline server,
but only for a single fixed offline server y.
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ut
We are now ready to prove Theorem 2 for the line.

Proof. Recall, that we are at time t and request r is arriving. We divide the
analysis into two steps: (i) the offline serves r and then (ii) the online serves it.
As a consequence, whenever a server of DC serves r, we can assume that a server
of OPT is already there.

For all following steps considered, M will be the minimizer of ΨM (X,Y ) in
the beginning of the step. It might happen that, after change of X,Y during the
step, better minimizer can be found. However, upper bound for ∆ΨM (X,Y ) is
sufficient to bound the change in the first term of the potential function.

Offline moves: If offline moves one of its servers by distance d to serve r the

value of ΨM (X,Y ) increases by at most k(h+1)
k+1 d. As OPT (t) = d and X does

not change, it follows that

∆Φ(X,Y ) ≤ k(h+ 1)

k + 1
·OPT (t) ,

and hence (5) holds. We now consider the second step when DC moves.

DC moves: We consider two cases depending on whether DC moves a single
server or two servers.

1. Suppose DC moves its rightmost server (the leftmost server case is identical)
by distance d. Let y denote the offline server at r. By Lemma 2 we can
assume that y is matched to the rightmost server of DC. Thus, the cost of
the minimum cost matching between M and Y decreases by d. Moreover DM

increases by exactly (h − 1)d (as the distance to rightmost server increases
by d for all servers of DC). Thus, ΨM (X,Y ) changes by

−k(h+ 1)

k + 1
· d+

k(h− 1)

k + 1
· d = − 2k

k + 1
· d .

Similarly, DX increases by exactly (k − 1)d. This gives us that

∆Φ(X,Y ) ≤ − 2k

k + 1
· d+

k − 1

k + 1
· d = −d .

As DC(t) = d, this implies that (5) holds.
2. We now consider the case when DC moves 2 servers x and x′, each by distance
d. Let y denote the offline server at the request r. By Lemma 2 applied to y,
we can assume that M contains at least one of x or x′, and that y is matched
to one of them (say x) in some minimum cost matching M of M to Y .
We note that DX decreases by precisely 2d. In particular, the distance be-
tween x and x′ decreases by 2d, and for any other server of X\{x, x′} its total
distance to other servers does not change. Moreover, DC(t) = 2d. Hence, to
prove (5), it suffices to show

∆ΨM (X,Y ) ≤ − k

k + 1
· 2d . (6)

To this end, we consider two sub-cases.
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(a) Both x and x′ are matched: In this case, the cost of the matching M
does not go up as the cost of the matching edge (x, y) decreases by d and
the move of x′ can increase the cost of matching by at most d. Moreover,
DM decreases by precisely 2d (due to x and x′ moving closer). Thus,
∆ΨM (X,Y ) ≤ − k

k+1 · 2d, and hence (6) holds.
(b) Only x is matched (to y) and x′ is unmatched: In this case, the cost of

the matchingM decreases by d. Moreover, DM can increase by at most
(h − 1)d, as x can move away from each server in M \ {x} by distance
at most d. So

∆ΨM (X,Y ) ≤ − (h+ 1)k

k + 1
· d+

k(h− 1)

k + 1
· d = − 2k

k + 1
· d ,

i.e., (6) holds.

ut

4 Extension to Trees

We now consider tree metrics. Specifically, we prove Theorem 2. Part of the anal-
ysis carries over from the previous section. We use the same potential function
as for the line. Observe that Lemma 2 holds for trees: We only used the triangle
inequality and the fact that there exists a unique path between any two points.

Proof (of Theorem 2). The analysis of the step when offline moves is exactly the
same as for the line. In particular, if the offline algorithm moves by distance d,
only the matching cost is affected in the potential function and it can increase
by at most d · k(h+ 1)/(k + 1).

It remains to analyze the change in the potential caused by the moves of
DC. In that case, we break down the DC move into elementary moves. Let us
call active the servers adjacent to the requested point r, i.e., the ones which are
moving. An elementary move ends when any server reaches either the request r
or a vertex of the tree. In the latter case, another elementary move immediately
follows, perhaps with a different set of active servers. We are going to prove
that (5) holds for every elementary move. By summation, this implies that it
holds for the entire DC move.

Consider an elementary move where q servers are moving by distance d. We
need to establish some notation first: Let M be a minimizer of ΨM (X,Y ) at the
beginning of the step and A be the set of active servers. Let us imagine for now,
that the requested point r is the root of the whole tree. For a ∈ A let Qa denote
the set of DC servers in the subtree below a (but including a). We set qa := |Qa|
and ha := |Qa ∩M |. Finally, let AM := A ∩M .

By Lemma 2, we can assume that one of the active servers is matched to
offline server in r. We get that M(M,Y ) increases by at most (|AM | − 2) · d.

In order to calculate the change in DX and DM , it is convenient to consider
the moves of active servers sequentially rather than simultaneously.
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For DX , it is clear that each a ∈ A, moves further away from qa − 1 DC
servers by distance d and gets closer to k − qa by the same distance. Thus, the
change of DX associated with a is (qa− 1− (k− qa))d = (2qa− k− 1)d. Overall,

∆DX =
∑
a∈A

(2qa − k − 1)d = (2k − q(k + 1)) d, as
∑
a∈A qa = k.

Similarly, forDM , we first note that it can change only due to moves of servers
in AM . Specifically, each a ∈ AM , moves further away from ha− 1 matched DC
servers and gets closer to the rest h − ha of them. Thus, the change of DM

associated with a is (2ha − h− 1)d, so overall we have

∆DM =
∑
a∈AM

(2ha − h− 1)d ≤ (2h− |AM |(h+ 1)) d,

as
∑
a∈AM

ha ≤
∑
a∈A ha = h.

Using above inequalities, we see that the change of potential is at most

∆Φ(X,Y ) ≤ d

k + 1
(k(h+ 1)(|AM | − 2) + k (2h− |AM |(h+ 1)) + (2k − q(k + 1)))

=
d

k + 1
(−2k(h+ 1) + 2kh+ (2k − q(k + 1)))

=
d

k + 1
(−q(k + 1)) = −q · d ,

As the cost of DC is q · d, we get that (5) holds, which completes the proof. ut
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